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ABSTRACT

A new electromagnetic logging method, in which the
source is a horizontal loop coaxial with a cased drill
hole and the secondary axial fields are measured at
depth within the casing, has been analyzed. The analy-
sis. which is for an idealized model of an infinite pipe in
a conductive whole space, has shown that the casing
and formation are uncoupled at the low frequencies that
would be used in field studies. The field inside the casing
may be found by first finding the field in the formation.
and then using this field as an incident field for the pipc
alone. This result permits the formation response to be
recovered from the measurcd field in the borehole by
applying a correction for the known properties ol the
casing. If the casing response cannot be accurately pre-
dicted, a separate logging tool employing a higher
frequency transmitter could be used to determinc the
required casing parameters in the vicinity of the receiv-
cr.

This logging technique shows excellent sensitivity to
changes in- [ormation conduetivity, but it is net yet
known how well horizontal stratification can be re-
solved. One of its most promising applications will be in
monitoring, through repeated measurements, changes in
formation conductivity during production or enhanced
recovery operations.

INTRODUCTION

At present, once a borehole is cased, the formation behind
the casing is virtually inaccessible to standard borehole log-
ging methods. Although techniques based on gamma-ray and
neutron scattering are sometimes useful, frequently they are

not interpretable. Even under favorable conditions for inter-
pretation, their radius of investigation is no more than
centimeters. Measurements of pressure, flow rate, and satu-
ration made downhole are not directly interpretable for fluid
distributions outside the casing. A method with the ability to
obtain measurements in the presence of casing, and with a
radius of investigation measured in meters or tens to hundreds
of meters. would be of considerable value in optimizing hydro-
carbon recovery programs.

Standard eclectromagnetic (EM) logging devices (e.g., 6FF40)
operate at frequencies- too- high- for their signal to. penetrate
conductive casings. For fields to penetrate the casing and en-
ergize the formation, the frequency of operation would need to
be reduced until the thickness of the metal casing was con-
siderably less than the skin depth in that metal. Unfortunately,
the response of the formation at that low frequency would be
undetectable with practically realizable instrumentation.

However, large-scale above-ground systems are used to map
the conductivity of the earth, and these EM soundings employ
low frequencies that should easily penetrate a well casing. In
this paper. a technique is introduced for logging cased bore-
holes using a large-loop transmitter located on the surface and
a receiver. or receiver array, lowered into the well on a wire-
line. With this configuration, low-frequency fields from the
distant surface transmitter penetrate the casing with little at-
tenuation but still produce secondary fields from the enclosing
formation that are measurable. The relative influence of the
physical properties of the casing and of the formation on the
axial component of the magnetic field inside the casing has
been analyzed, and a method for the determination of the
apparent resistivity outside the casing has been developed.
The technique is referred to as surface-to-borehole logging.
Figurc | illustrates the gcometrical configuration of the source
loop and casing.

To study this configuration, an analytical solution for the
ficlds on the axis of an infinite pipe embedded n an infinite
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conducting whole space has been developed (sce the Appen-
dix). This analytical model is probably too idealized to make
accurate quantitative interpretations of real data, but its pre-
dictions have been verified experimentally, indicating that a
more versatile numerical model capable of incorporating both
vertical cylindrical and horizontal planar boundaries would
yield useful quantitative predictions. Our analytical results
were verified by an experimental study using lengths of pipe in
free space. These experiments were also used to study more
realistic phenomena, in particular the response when the
source loop was located in the plane perpendicular to one end
of a finite pipe.

The radial response of a cylindrically layered medium to an
EM source on the axis is discussed in the borehole logging
literature. EM techniques in the borchole were introduccd by
Doll (1949), but his analysis of the tool response was based on
ad hoc hypotheses which correspond to the case of low con-
ductivity or frequency. More general formulations of the in-
duction response appeared in the early 1960s. Moran and
Kunz (1962) treated the case of one cylindrical boundary, and
Duesterhoeft and Smith (1962) gave a solution for the case of
two cylindrical boundaries. In these formulations, the conduc-
tivity of each cylindrical shell varies, but its magnetic per-
meability is held constant. Anderson (1968) studied the effect
of magnetic permability in an infinite medium outside the
borehole on the quadrature component of the induction log
response. Wait and Hill (1977) analyzed the shielding effect of
casing on EM signals generated inside the casing. Hill and
Wait (1979) analyzed the EM response of a wire-loop antenna
mounted on an infinite conducting pipe for wuse in
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FiG. 1. Geometrical configuration of the source loop and the
casing. A cylindrical coordinate system (r. 6, ) is used. I(w) is
the current in the source loop: a is the source loop radius: b is
the outer radius of the pipe: ¢ is the pipe inner radius; and d
the pipe wall thickness. Regions 1, I, II1., and 1V are defined in
order to establish the mathematical formulation. The pipe is
considered infinite.

measurement-while-drilling applications. The formulation pre-
sented in this paper is similar to that of Duesterhoeft and
Smith except, as illustrated in Figure 1, the source is con-
sidered to be a finite loop in the x-y plane, centered on the z
axis, and embedded in the infinite region outside the cylinders
representing the borehole and casing. The effects of variable
magnetic permeability in each cylindrical layer are also in-
cluded: The results presented here are consistent with all the-
previously published studies but extend the area of application
to a new technique for formation evaluation.

Analytical model

The vertical component of magnetic field inside the casing
depends upon distance from the axis r, distance from the
source plane |z — 2’|, and angular frequency w. It is shown in
the Appendix that this field can be expressed as

HIG s .
MO T kL Pe Ak, (1)
o),

where « is the source loop radius, I{w) is the current exciting

H(r, 2, w) =

the source, k_ is the wavenumber for the vertically propagating
component of the solution, Iy(y,r) is the modified Bessel func-
tion of the first kind of order zero, v, = \/kf — k%, and k, is
the propagation constant in the first shell. The amplitude coef-
ficient f,(k_) is a complicated function depending on the physi-
cal properties of the casing and surrounding medium, as well
as on the transform variable k.. Equation (1) evaluated at
r = O is the basis for the numerical model used in this study.

SCALE-MODEIL EXPERIMENTS

In order to distinguish magnetic from EM effects for ver-
ification of the numerical model, measurements were made in
two different pipes: a conductive. nonmagnetic copper pipe of
9 m length, 0.063 m inner diameter, and 0.002 m wall thick-
ness and a conductive, magnetic, soft-steel pipe of 9 m length,
0.063 m inner diameter, and 0.0043 m wall thickness. The
source loop was eight turns of copper wire on a circular form
0.61 m in radius.

The source loop was excited by sine waves on a logarithmic
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F1G. 2. Relative positions ol the pipe, the source loop, and the
receiver during the experiment. An infinite pipe was modeled
by positioning the source loop in the midplane of the pipe, as
indicated by A. A semiinfinite pipe was modeled by posi-
tioning the source loop in the endplane of the pipe, indicated
by B. L = 1.49 m.
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frequency interval from 0.06 Hz to 3000 Hz. The waves were
generated by a Wavetec Model 171 signal generator and
amplified using a Crown Laboratory Amplifier-M 600. The
axial component of the magnetic field was measured with a
Develco 9200C fluxgate magnetometer (500 Hz bandwidth).
The signals were analyzed on a Hewlett Packard Spectrum
Analyzer, model 3582A; for the measurements at dc, a Hewlett
Packard Multimeter, model 3457A (7 digits), was used.

The two pipe configurations adopted for the experiment are
illustrated in Figure 2 Configuration A shows a simulated
infinite pipe corresponding to the analytical model. The source
loop was centered on the midplane of the pipe, and the mag-
netic field was recorded on the axis of the pipe at distances 0.0
m and 1.49 m from the plane of the source loop. In the second
configuration, B, the source loop was pasitioned at one end of
the pipe simulating a semiinfinite pipe. Measurements were
recorded in the plane of the source loop and at 1.49 m from
the plane of the source loop.
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F1G. 3. Field strength ratio FSR (ratio of the magnetic induc-
tion at a point inside the pipe to the magnetic induction at the
same point with no pipe) versus frequency. Both infinite and
semiinfinite cases were simulated using copper tubing and
steel casing. (a) Results for the receiver located in the plane of
the source loop. (b) Results for the receiver located at 1.49 m
from the plane of the source loop.

Experimental results

The experimental results are summarized in Figure 3. Field
strength ratio (FSR), the ratio of the absolute value of the
magnetic field inside the pipe to the magnetic field at the same
point with no pipe present, is plotted as a function of fre-
quency. The rise in FSR for L = 1.49 m at higher frequencies
is attributed to instrument error and poor calibration of the
fluxgate sensor. The cause of the slight separation of the
curves at the 1.49 m distance is not known, but may have been
caused by errors in magnetometer positioning. The experi-
mental error is estimated to have been less than 10 percent.

At low frequencies, the field inside the copper pipe is the
same as in free space; there is no static shielding effect due to
the conductive, nonmagnetic pipe. As the frequency increases,
the magnetic field inside the pipe is attenuated by the conduc-
tive material of the pipe wall; and the FSR decreases quickly.
Results-are similar in-the case.of the semiinfinite configuration,
except that the rate of decrease of the magnetic field with
frequency is less than in the infinite configuration.

The conductive, permeable, iron pipe gives rise to a more
complex response. For measurements in the plane of the
source loop in the simulated infinite pipe, iron produces a
static shielding effect at zero frequency. With increasing fre-
quency. the magnetic field inside the pipe vanishes because of
skin effect. Curiously, the static shielding effect is larger in the
truncated pipe than in the infinite pipe. As in copper pipe, the
rate of decrease of the FSR with increasing frequency is
smaller in the truncated iron pipe than in the infinite pipe.

At a distance of 1.49 m from the plane of the source loop,
the low-frequency response of the axial component of the
magnetic field inside the iron pipe is larger than if the pipe
were absent: i.e. FSR > 1. The magnetic field is nearly uni-
form along the pipe and attenuates less rapidly with distance
than the field in free space. Consequently, systematic FSR
measurements show a transition from a static shielding effect
near the plane of the loop to a static enhancement effect for
distances greater than 0.80 m from the plane of the source
loop. The enhancement effect persists along the axis for many
source radii. As in the previous cases, the skin effect eventually
dominates the response at higher frequencies, and the mag-
netic field vanishes inside the casing. Numerical studies indi-
cate that the magnitude of the static enhancement effect varies
inversely with source loop radius.

The effectivencss of the iron pipe in shielding its interior
region can be correlated to the gecometrical properties of the
ficld. The iron pipe exhibits shielding effects for the static
magnetic field when there is appreciable curvature of the im-
posed field at the surface of the pipe. As the [requency in-
creases, EM induction contributes more shielding. Out of the
planc of the source, the static magnetic induction tends to
keep the field in the pipe constant, yielding an enhancement in
the FSR. At larger distances from the source or if the source
radius becomes large, the field is effectively uniform and paral-
lel to the pipe so that the magnetic shielding should vanish.
The numerical investigation of these eflects in the infinite pipe,
discussed in the next section, confirms this last conclusion.
Why the truncated pipe is more effective at shielding static
and low-frequency fields than the infinite pipe has not been
analyzed. but since a practical implementation of this scheme
would require a larger transmitter loop, the effect would prob-
ably be insignificant.
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NUMERICAL MODELING
Test case

The experimental results were compared to the predictions
of the numerical model. The conductivity of the copper pipe
was estimated to be 3.5 x 107 S/m and its relative magnetic
permeability was assigned a value of 1. The conductivity and
relative magnetic permeability of the iron pipe were estimated
as 8.0 x 10° S/m and 1350, respectively, although a magnetic
permeability of 50-70 may be more representative of actual
casings. Figure 4 shows good agreement between the experi-
mental data and the predictions of the numerical model. This
agreement suggests that the numerical model will have accept-
able accuracy when applied to simulated field-scale problems.

The numerical model was used to analyze the static mag-
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Fi1G. 4. Comparison between experimental and analytically
predicted results. The field strength ratio is the ratio of the
axial magnetic field inside the pipe to the axial magnetic field
with no pipe. The solid and dashed curves show the theoreti-
cal predictions, while the triangles and circles are the experi-
mental results.
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FI1G. 5. Influence of the source loop radius on the FSR in free
space at two frequencies. The pipe radius is 0.063 m; the
thickness is 0.0046 m; the conductivity is 8.0 x 10® S/m; and
the relative magnetic permeability is 150. The receiver is lo-
cated 1.49 m from the plane of the source loop.

netic enhancement effect seen in the laboratory results. Figure
5 shows the effect of g, the source loop radius, on FSR for two
representative frequencies, 0.1 Hz and 10 Hz, with a separa-
tion of 1.49 m between the plane of the source loop and the
receivers. As a increases, the static enhancement of the field
inside the pipe decreases to a frequency-dependent asymptotic
value. In free space the static enhancement effect becomes
negligible when the ratio of the loop radius to the borehole
radius equals about 50 (for the simulated case, a ~ 3.1 m).

Simulation of full-scale cases

Although the relative dimensions of the source loop and
pipe used in the laboratory experiment were very different
from those that would be used in the field, the agreement
between their respective results inspired confidence that the
predictions of the numerical model would be valid in the field.
Accordingly, several numerical models were constructed to
study the influence of the casing parameters and formation
conductivity on the axial component of the magnetic field
inside the standard casing. The fluid filling the casing was
assigned a conductivity of 0.5 S/m and a relative magnetic
permeability of 1. The radii of the source loop and the bore-
hole were chosen to be 100 m and 0.1 m, respectively, to
simulate a typical arrangement envisioned for a full-scale field
experiment and to avoid static magnetic enhancement effects.
The formation conductivity was first chosen to be zero and its
relative magnetic permeability was taken as 1.

In general, the FSR depends upon the physical properties of
the three regions in the model, geometrical factors describing
the influence of the casing radius and thickness, the source
loop radius, source current magnitude and frequency, and the
separation between the source loop and the observation point.
However, for observation points farther than one source loop
radius from the source plane, the FSR becomes practically
independent of the distance to the source loop. For a repre-
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Fi¢. 6. Influcnce of the electrical conductivity of the pipe on
the field strength ratio versus frequency. The numbers on the
curves represent the values of the electrical conductivity of the
pipe in S/m. The source loop is of 100.0 m radius; the pipe
radius is 0.1 m; the pipe wall thickness is 0.006 m; and the
relative magnetic permeability of the pipe is 150.0. The forma-
tion has an electrical conductivity of 1.0 x 1072 S/m and a

relative magnetic permeability of 1.0.



94 Augustin et al.

sentative separation (i.e., depth) greater than the source loop
radius, Figure 6 illustrates the variation of FSR with casing
conductivity o, where the subscript p denotes pipe. Virtually
the same plot is obtained for any depth greater than one
source loop radius. Similar plots result when o, is held con-
stant and u,,, d, or casing radius c is varied. A family of such
plots would show that FSR depends upon each of these fac-
tors, as would be expected. Generally, the higher the value of
these parameters, the lower the frequency at which EM shield-
ing becomes significant. It has been discovered in the analysis
of many numerical experiments that the field variations can be
simply expressed in terms of an induction parameter, given by
o, u,d%f, for a pipe of fixed radius.

In order to achieve this simplification, a new quantity is
introduced. The normalized secondary field (NSF) is defined
as the ratio of the secondary field to the primary, or free-
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F1G. 7. Argand diagram for the normalized secondary field,
NSF, for the casing in free space. The numbers on the curve
are the values of the induction parameter ©, ppdzj; where ©, is
the pipe conductivity, p, is its relative magnetic permeability,
d is its wall thickness, and f'is the frequency. The pipe is 0.0873
m in radius; its wall thickness is 0.0095 m. The electrical con-
ductivity of the pipe is 1.0 x 107 S/m and its relative magnetic
permeability is 150.0.
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F1G. 8. Influence of the pipe radius on the real and imaginary
parts of NSF. The pipe is 0.0095 m thick; its conductivity is
1.0 x 107 S/m: and its relative magnetic permeability is 150.0.
The source loop radius is 100. m.

space, field. The secondary field becomes equal and opposite
to the free-space field at high frequencies, so that the total field
observed within the casing goes to zero. Thus the NSF is
different from the FSR; the latter describes the ratio of the
total field to the free-space field. The FSR and NSF are relat-
ed by FSR =1 + NSF. The Argand diagram, which plots the
real against the imaginary parts of a complex function as a
parameter is varied, is useful for analyzing the beahvior of the
NSF. Figure 7 is an Argand diagram of the NSF for the
casing in free space. The NSF has practically no dependence
on receiver position at distances greater than one loop radius
from the transmitter and is also practically independent of
casing radius: it depends only on the induction parameter.

In Figure 8, for a source loop radius of 100 m, the NSF has
been plotted for casing radii of 0.05, 0.1, and 0.2 m, which
bracket the radii of common casings. At low and high fre-
quencies, the NSF is independent of casing radius, while in
the center spectrum the curves diverge slightly. However,
although the NSFs are different for each casing radius, the
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FiG. 9. Argand diagram of the normalized secondary axial
magnetic field (NSF) in the formation with no casing (forma-
tion response) and in the casing surrounded by the formation
(casing-in-formation response). The depth is 100.0 m. The for-
mation and casing conductivities are 1.0 x 10~ ! $/m and 1.0
x 107 S/m. Their relative magnetic permeabilities are, respec-
tively, 1.0 and 150.0. The source loop has a radius of 100.0 m,
while the pipe has a radius of 0.1 m and a wall thickness of
0.006 m.
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difference is small. In order to simplify the following analyses,
the casing radius has been set to 0.0873 m (7 5/8 inch O.D,, 35
Ib/ft pipe), a typical casing size in oil well drilling and com-
pletion.

The NSF is calculated for a receiver in the formation alone
{formation response) and for a receiver within the casing
(casing-in-formation response) using the algorithm described
in the Appendix. The Argand diagrams for the formation re-
sponse and casing-in-formation response are shown for two
depths, 100 m and 1000 m, in Figures 9 and 10. The formation
conductivity o, in the figures is 0.1 S/m. Note that the forma-
tion response lies along the same locus in Figures 9 and 10.
This is consistent with the observation that in the formation
alone the NSF depends only on the induction parameter
cj.fLZ, and this dependence is illustrated in Figure 11. Figure
11 would be used to determine an apparent conductivity for
the formation, o,, in a field experiment without casing in
which the real and imaginary parts of the NSF were measured
at a given frequency f and depth L.

The Argand diagram for the casing-in-formation response
for a depth of 1000 m and a variety of formation conduc-
tivities, Figure 12, shows a rather complicated pattern. The
curves are well separated, however, and suggest that the for-
mation conductivity could be accurately determined in the
presence of casing.

INTERPRETATION METHOD

It was discovered in analyzing these Argand plots that the
response of the casing alone and the formation alone could be
combined to yield the casing-in-formation response. The total
axial magnetic field inside the pipe H” can be decomposed
mnto

H' =H,+H,. 2

where H . is the axial magnectic field contributed by the forma-
tion in the absence of casing and H, is the axial magnetic field
contributed by the casing. At low frequencies the contribution
of the casing to the secondary field in the formation is pro-
portional 1o the field which would exist at the same point in
space with the casing absent. Figure 13 shows that at fixed
frequency, |K| = |H,/H,| does not, for practical purposes,
depend upon the formation conductivity or depth (the vari-
ation in the ratio is always in at least the third significant
figure). Although absolute values have been plotted for con-
venience, the real and imaginary parts of the ratio H . /H, are
independently constant at fixed frequency. Thus

H, = KH,.
where K is a complex constant characteristic of the casing.
Therefore
H" =H, + KH,.
or (3)
H" =(1 + K)H,.

Since in [ree space K = H./H, and o = 0, Figure 13 shows
that in the frequency range of interest, K is independent of
formation conductivity and depth; it is given by the NSF for
the pipe in free space. This result was observed to hold for all
frequencies which would be of interest in practical field sur-
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F1G6. 12. Argand diagram of the NSF inside the casing sur-
rounded by formations of differing conductivities. The conduc-
tivity of the casing is 1.0 x 107 S§/m. The relative magnetic
permeability of the casing is 150.0. The relative magnetic per-
meability of the formation is 1.0. The source loop is 100.0 m in
radius. The pipe is 0.1 m in radius and has a wall thickness of
0.006 m.
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FiG. 13. The value of |K| = |[NSF| is shown for a source loop

radius of 100 m. Altogether this one plot represents eight
curves which differ by, at most, about 1 percent. The absolute
values are plotted for convenience. In fact, the real and imagi-
nary components of K are separately independent of forma-
tion conductivity and observation point. An Argand diagram
of K would yield the same curve as shown in Figure 7.
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veys. Basically, this result means that the casing is uncoupled
from the formation at low frequencies. The field inside (or
outside, for that matter) the casing is found by first finding the
field that would be present in the formation alone. This field is
then considered as a free-space field at the casing and pro-
duces a response for the casing as if it were in free space. This
field can then be considered a field incident on the casing
which induces scattering currents to circulate in the casing as
if it were in free space.

Interpretation curve

In a practical survey, the in-phase and the quadrature com-
ponents of the total axial magnetic field inside the casing H”
are measured for fixed frequencies. Using the known charac-
teristics of the casing and the frequency, the value of K is
equal to the NSF and can be determined using the curve in
Figure 7. The field in the formation can then be evaluated
using

H’
H, - :
1 +K

4

The field on the axis of a finite loop in free space H, corre-
sponding to the survey configuration is given by

a2

I
Hn - 2 (az + L2)3/2’
where a is the source loop radius, I is the current in the source
loop, and L is the separation between the transmitter and the
observation point.

Knowing H, and H,, the normalized secondary field due to
the formation, Hy, is

Hy= =—L_—* (5)

A single Argand diagram, shown in Figure 11, gives the sec-
ondary field in the formation alone as a function of o, fI”. The
value of H, derived from equation (5) locates a point on the
curve, giving a value of the product I’fo,. Since the source-
receiver separation L and the frequency f are known, an ap-
parent conductivity o, can be determined.

Survey design

The graphs of the FSR versus [requency shown in Figure 6
indicate that the total magnetic field inside a pipe of conduc-
tivity greater than 3.0 x 107S/m vanishes due to the skin effect
when frequencies are greater than about 10 Hz. Thus,
measurements should be made at frequencies less than 10 Hz.

The skin depth of the formation must also be considered. If
possible, the skin depth in the surveyed formation should
exceed the depth of the receiver. Frequency can be adjusted to
obtain the desired skin depth. For example, to obtain a skin
depth of 1000 m in a formation of conductivity 0.1 S/m, the
survey frequency of measurement has to be approximately
2 Hz.

Figure 11 suggests the optimum frequency to obtain the
maximum resolution of the apparent conductivity. Optimum
frequencies are the ones corresponding to the part of the curve
were the parameter product values have maximum separation.

Maximum separation occurs when szcf is between 7 x 10*
and 3 x 10°. For a separation of 1000 m and an assumed
formation conductivity of 0.1 S/m, the corresponding fre-
quency range is from 0.7 Hz to 30 Hz.

The signal level in boreholes penetrating a conductive, lay-
ered half-space has been calculated to vary from 107° to 1078
gammas per unit moment of source intensity (Morrison et al.,
1984). Since relatively large currents and source loops would
be used in practical surveys, ample signal would be available
for detection at depth using currently available magnetome-
ters.

CONCLUSION

A mathematical formulation for a new surface-to-borehole
formation evaluation technique has been developed. Agree-
ment between numerical and scale-model experimental results
gives good confidence in the full-scale numerical modeling.

At frequencies for which there is appreciable response from
the formation itself, the casing response is of the same order as
the formation response and is, moreover, uncoupled from the
formation. This means that the casing response can be accu-
rately removed from field measurements and the formation
response alone recovered. Knowledge of the casing parameters
is required for this process, and it is likely that the practical
limits to the resulting formation evaluation will be set by vari-
ation in properties of the known casing. Should this be a
serious problem, it might be possible to incorporate a second
transmitter in the borehole tool which would serve to measure
the properties of the casing alone in the vicinity of the receiv-
er. Alternatively, commercially available wireline pipe analysis
surveys could be used to estimate casing properties.

This surface-to-borehole logging technique has been ana-
lyzed only for a homogeneous whole space. The sensitivity of
the method to measurement of formation conductivity
through casing is so good that an extension of the analysis to
the layered model is warranted and is underway.

One of the most promising abilities of this new logging
technique will be to monitor changes in formation conduc-
tivity behind casing during production or enhanced recovery
processes. In this case the casing response can be presumed to
be constant with time and errors in estimating its properties
will become second-order errors on the differences in response
with time.
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APPENDIX
MATHEMATICAL SOLUTION

The EM fields due to a finite loop source suspended in air
over a layered half-space are given by Morrison ct al. (1969)
and by Ryu et al. (1970). The EM fields due to a point dipole
on the axis of a cylindrically layered medium are obtained by
Duesterhoeft and Smith (1962) and Moran and Kunz (1962).
Hill and Wait (1979) analyze a wire-loop antenna supported
on a conductive drill pipe. There does not scem to have been a
previous treatment of the fields of a finite loop on the z axis of
a cylindrically symmetrical medium.

In the following treatment, thec EM fields for a finite loop
source on the axis of an axisymmetric medium are derived. In
the problem of immediate concern the loop is embedded in the
cylindrically infinite medium farthest from the z axis; however,
the formulation used permits a source in any of the cylindrical
layers to be modeled by adjustments to components of a
single vector representing the source terms.

The electric field E and the magnetic field H in a linear,
isotropic medium are coupled through the Maxwell equations

cH

~

ct

VxE=—pn (A-1)

and

cE
VxH=¢—+J (A-2)
cl

The current density J has a component due to the forcing
function and a component due to eddy currents induced in the
medium. Thus

J=J.+J.,
where
J. =oE.

Assuming a time dependence of ¢/, the forcing function is
written

J. =

a
s —
r

H(®)3(r — a)d(z — )8,

where =’ locates the plane of the source loop, a is the radius of
the loop, and Hw) is the frequency-dependent current im-
pressed in the source loop.

Because of the axial symmetry of the problem, the fields
have the cylindrical components

J=J0, J,. 0),
E = E(0. £,, 0),
and

H = H(H,. 0. H,).

Application of the curl operator in cylindrical coordinates
in equations (A-1) and (A-2) gives

"VEO .
LIE— (A-3)
Cz
1 ¢
— — (rEy) = —jopH . (A-4)
ror
and
¢H, OH, ) .
L —Z2 = J 4 (o + jog)E,. (A-5)
‘z or

After elimination of H, and H_ [rom equations (A-3), (A-4),
and (A-5), E, satisfies

2 1 ¢ 1 L0 .
(ﬁl'2+;571‘7+k[_+(~‘—"5 Ey = joud,, (A-6)

where

k, = \ —jopo; + jos)

is the propagation constant in the ith cylindrical shell.

Equation (A-6) is homogeneous except at the source lo-
cation. To obtain a general solution, first a solution to the
homogeneous equation is written in each region. In the region
containing the source, a term to represent source effects is
added to the solution of the homogeneous equation. Finally,
application of the boundary conditions on the EM fields de-
termines the form of the arbitrary functions in each region.
Once a solution for E, is obtained, H_ can be obtained using
equation (A-4).

In each region, the field satisfies

or- ror ! ¢z

(«' l (ﬂ' 1 (@2
|:- - +—7—3+ki+,—_’z]Ee(F, z, ©)
4] - o ’
= jou; — H@)lr — ad(z — 2. (A-7)

The homogeneous equation can be solved by separation vari-
ablcs. Assume that E(r, z, ) has the form

Eylr. = @) = A(@)R(NZ(z). {A-8)
Substitution of equation (A-8) into the homogeneous form of
equation (A-6) and subsequent division by A(®w)R(r)Z(z) gives

R" IR

1 Z
-t k== (A-9)

' z

Since the left side is a function of r alone while the right side
depends only on z, each side must equal a constant. Choosing
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the form of the separation constant as k2, the equation in z is
written

Z7(2) + k2 Z4z) = 0. (A-10)
which is satisfied by
Z(Z) — eijk;{: :’)’

where z' is interpreted as the source coordinate and the sepa-
ration constant is chosen to have the form of a wavenumber in
the z coordinate. The equation in R(r) is

! s a1
R +-R —|(kZ— k) +|R=0.
r r

Defining y? = k2 — k?, this is written

! I
R"+—R'—(y§+—2)R:0. (A-11)
r r

This is the canonical form for the modified Bessel differential
equation of order 1, parameter y, whose solutions are the
modified Bessel functions

Rey;ry =7 Liy;r) + f7 K, (y;r),

{McLachlan, 1955, p. 117), where f; and /7 may depend upon
k_. The solution assumed in equation (A-7) has the form

E‘,(I", z, W) = [j, 11(*/.-’) +_/.,'+K|(Y,'")—Ieijk:(:7 =,

Because E, is satisfied for any k_, a general solution includes
all possible values of k_, or

Eolr. z, ) = j LATL ) + 1 Ky n)e =0 dk

(A-12)

The sign of the exponential is chosen such that Re [ +jk (z —
z')] is negative, since E; must decrease as distance from the
source increases.

At the source location, separation of variables fails and inte-
gral transform methods must be applied. The Fourier trans-
form pair

Eyr, z. o)« Eyr. k.. )

and the Hankel transform pair of order n given by

H"{ Eo(r)} = [ Eq(r)rd (hr) dr = E(h)
0

and

H, '{h‘o(k)} = j ERNJ (M) dh = Eyfr)
0

are invoked in the solution. Equation (A-7) is writien as

T e T
it sl i slew [ LN
cr- roror (g

= jou, a Ho)3(u — rd(z — 2. (A-13)
r

Application of the Fourier transform gives

‘2 ¢ 1 .
Fo——
& oror i

a o ik.~t
= jop, — H{w)3(a — r)e*s=
N

k2 — kf:|E9(r, k.. ®)

Application of the Hankel transform of order 1 is suggested by
the order of equation (A-11}). This yields

[—22 + k7 — K2JES, k., 0) = jop, al(w)] (Aa)e’™ "
This equation is solved algebraically for E,, resulting in

. Jopall®)
Egh k. o) = =5 J,(ha
ol k.. 0) Aty \(haye”

Applying the inverse Hankcl transform of order 1 to E, yields

, J(ha)J ((Ar)
Lyr. k,. o) = —jopal{m) 2— % dh e
o o

The integral is analytic. Substitution of its value gives

E o 9Ky ak < a
Egr. k_, o) = —jopal{m)e™= 5 .
I (v} K (Y1), r>a

Re (yZ) > 0.

Finally, inverse Fourier transformation gives E,

fopal(w)
Eyr. z. o) = _fopatel
2n

”“ ’ {Il(y,.2 K (Y a)e  *E D k| r<a (A-14)

Iy QK [y r)e =73 dk | r>a

Equation (A-14) has a form suitable for matching to equation
{A-12) at the cylindrical boundaries.

te i, space the total electric ficld- in-each region-is cxpressed-
by
—jop, al(ye? =1, (v,r) f1(k.), (A-15)

jhozt

Eglrik. w)=

Eyir. ko, 0) = —jou, o)’
X [1 (Y? / (I‘ ’+1\ (Y?’)/ l\_.)], (A-16)

— jop, al{w)e™:=

x LK (Y3 nfatk) + 1y nKtysa)l, (A-17)

Eylro k., o) =

and

Egr. k.. o) = —jou, al(@)e™

x LK {yy ) falk) + Ty a) Ki(ys )] (A-18)
where 1,,. I,. K, and K, are the modified Bessel functions of
the first and second kinds of order 0 and 1 and f,, /5 . f; . and
[, are unknown coefficients. Using the relation between H,

and I, in equation (A-4), the vertical magnetic field in each
region 1s expressed by

H. (k. o) = al(@)e™ =y £k o(y,r) (A-19)
H_tr k. o) = al(ow)e™y,
X [fo kM ovsr) = f3 (kDK o(v2 1], (A-20)

and
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H_(r. k., 0) = al(®)e*y,
x [K vy allolyyr) — 3k )Ko(y3 )] (A-21)

The boundaries divide the space into four coaxial cylindri-
cal regions. Figure 1 illustrates that in regions T and II, only a
secondary field (no source term) exists, while in regions III and
IV. both a primary field (due to the source loop) and a second-
ary field (due to the eddy currents in the medium) exist. At the
boundaries between regions I and 11 and between regions II
and 111, H, and E, are continuous. Application of the bound-
ary conditions yields the system of equations

w Iy h) (k)

= W1 y2 D)5 (k) + K oty, P T (k) (A-22)
Yilotr PV fitky)

= v, lv2 b Tk — Koy, DS 5 (k)] (A-23)
walLr, dfK) + Ky(v, 5 (K )]

= 1, [K, (v (K ) + Tilys DK (v3a)] (A-24)

and

Yallolt, V5 (k) — Kol d)f5 (k)]

= v[K (s alylvsd) = Koy dfsk)l - (A-25)

These equations are linear in the unknown coefficients,
which can be obtained using matrix algebra:

ol by —nydi(y, b) —H1, Ky, ) 0
Yooty By =V Ly b) Y2 Kolv2b) 0
Y Hodi(yad) P Ki(y,d) —p; K (y3d)
0 Volglyod) =7, Kolyad) 13 Kolysa)
I 0
/5 0
‘iz = . . A-26
S ws Iy, YK ({y5 ) ( )
15 13 Kilysalolysd)

When the result for f,(k.) is substituted in equation (A-15) and
the inverse Fourier transform applied, the expression for the
axial magnetic field in region I is obtained:

aliw) V7 e
H_(r,z, o) = 5 Yo Sk e *E dk

(A-27)

Equation (A-27) evaluated at r = 0 is the basis for the numeri-
cal model used in this study.



